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(Received 15 November 1994) 

Abstract 
An error in equations (3b) and (3c) of Su & Coppens 
[Acta Cryst. (1994). A50, 636-643] is corrected. The correct 
equations are 

{ arccos(R31/sin/3) if R32/sin/3 >__ 0 
c~ = 27r - arccos(R31/sin/3) if R32/sin/3 < 0'  (3b) 

arccos (-el3/sin/~) 

"7 = 27r - arccos(-Rla/sin/3) 

if R23/sinfl >_ 0 
(3c) 

if R23/sin/3 < 0" 

All relevant information is given in the Abstract. 
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Abstract 
It is shown that, in projections of non-centrosymmetric space 
groups having symmetry p3ml or p31m, loci exist along 
which Friedel's law is obeyed even in the presence of n-beam 
interactions and phenomenological absorption. This theoretical 
prediction is verified by means of convergent-beam electron 
diffraction experiments on Li2ZnTi308. 

I. Introduction 
Amongst the symmetry elements, the centre of inversion is 
well known to play a special role in electron scattering by 
crystals. For instance, where the kinematical description is a 
useful approximation, only the Laue groups can be determined 
unequivocally. Effects due to n-beam scattering in general are 
required to resolve this problem (Goodman & Lehmpfuhl, 
1968). The analysis of non-centrosymmetric diffraction 
patterns, however, still presents particular difficulties. For 
certain non-centrosymmetric space groups, a simplification that 
can be utilized in initial interpretation is that, in the seven-beam 
approximation, zone-axis patterns reduce to an equivalent two- 
beam form (Moodie & Whitfield, 1994). It is now shown that, 
for specific space groups, loci exist along which Friedel's law 
is obeyed even in the presence of n-beam interactions. These 
serve to direct attention to specific areas in convergent-beam 
diffraction patterns where the failure of Friedel's law can be 
interpreted in structural terms. 

Friedel's law states that the intensities of diffracted beams 
related by a centre of inversion are equal, that is, that 
I (g)  -- I(~).  When this is true, the space group of a crystal 
can be determined at best to within a centre of symmetry and 
this imposes a severe limitation on diffraction techniques. 

The law is known to fail when absorption is significant 
or when dynamical scattering is strong. Bijvolet's method, of 
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particular importance in the X-ray crystallography of organic 
materials, exhibits the first condition whilst convergent-beam 
electron diffraction is well suited to utilize the second condition. 

In convergent-beam electron diffraction (CBED), loci are 
very important in the determination of symmetry and the 
departure from symmetry (Tanaka, Terauchi & Kaneyama, 
1988). It is the purpose of this communication to show that 
the combination of symmetry elements in a number of non- 
centrosymmetric space groups generates loci along which, and 
only along which, Friedel's law holds for any thickness and 
for any phenomenological potential. These constitute sensitive 
diagnostic features for the identification of the space groups 
and provide a starting point for perturbative descriptions. 

2. Scattering diagrams 
In the multi-slice formulation of electron scattering, which is 
a basis-free description, a pictorial representation of the wave 
function can be given in terms of scattering diagrams (Moodie, 
1972). Typical scattering diagrams are shown in Fig. 1. 

In essence, this diagrammatic representation derives from 
the circumstance that the nth-order interaction can be 
written in the form (i)" y ] . . .  E V(9i) . . .  V(9,~-a)V(9 - 
Y]i 9 i )Z(~ . . .  ~,~-1), where the V(9i ) are structure amplitudes 
involved in the interaction and the ~i are the excitation errors. 
Each term of the series therefore consists of a function 
depending only on the structure multiplied by a function 
depending only on the geometry. 

In terms of these diagrams, the breakdown of Friedel's law 
basically derives from the coupling of the 7r/2 phase change 
associated with each elementary scattering event within the 
multiple-scattering sequence with the anti-symmetric part of 
the structure. 
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When the g and ~ reflexions coincide, that is, for the 
forward-scattered beam, the contribution from each diagram 
can be added to that from the diagram inverted in the origin and 
the anti-symmetric contributions cancel. This, as is well known, 
accounts for the centrosymmetric distribution in intensity in the 
central disc of a convergent-beam diffraction pattern. If higher- 
layer-line contributions are appreciable, that is, if diagrams 
out of the zone must be considered, the result still holds in 
three dimensions provided that the crystal possesses a plane of 
reflexion normal to the incident beam. 

For a reflexion g, the wave function is built up from an 
infinity of diagrams. In a sequence of typical diagrams, labelled 
p, the real and imaginary parts of the nth-order products of the 
structure amplitudes are written PDn and PEn. The sequence 
for the reflexion g is then of the form 

6 + i( 'n,  + i 'E , )Z ,  + i ~ ~ ( ' n :  + i lE~)& 
2 

+ i3 ~ ( ' D 3  + i'E3)Z3 + . . .  
3 

, [(, ) 
2 4 

3 5 

- } - l i [ (1DI ,Z1-E1D3,Z3.- ] -E1D5Ns-. . . )  
3 5 

2 4 

where E symbolizes the sum over all the nth-order diagrams. 
r~ 

In general, the Z function for the reflexions g and 
will be equal for each specific diagram at the orientation 
appropriate for the testing of Friedel's law or, equivalently, at 
the corresponding points of the convergent-beam discs. Hence, 
the corresponding sequence for ~ is 

, [(, ) ~- , . .  

2 4 

_{_ 1E1Z1 _ ~ 1 Z EsZs - . . .  
3 5 

-JI- l i [ ( IDIZ1-E]D3,Z3-Jf-~-~ID5,Z5-.. .)  
3 5 

- ( ,  - E 1..E2.N2 -.]- ~ 1.S4Z4 - . . . )  ] . 
2 4 

Friedel's law is thus broken since the intensities of the 
reflexions g and ~ will not be equal. 

When the thin-phase-grating approximation is valid, or in 
the high-voltage limit, the Z function reduces to a factorial 
(Moodie, 1972; Cowley & Moodie, 1962) and the above series 
can be written 

% = (Cco~ - Asin) q- i(C~in -J- A¢o,) ( l a )  

% -- (C¢os --I- A~in) Jr i(Csin -- A¢o~), ( lb)  

where typically Cco~ is the cosine transform of the 
centrosymmetric part of the structure and A~i, is the sine 
function of the antisymmetric part of the structure (Cowley & 
Moodie, 1959). This effect will be particularly strong when 
the asymmetry arises from a non-centrosj, mmetric distribution 
of potential, for instance in the sphalerite structure with the 
sublattices occupied by atoms of different atomic number. 
Hence, in general, Friedel's law is broken in the high-voltage 
limit, and therefore effectively in very thin crystals. 

For the forward-scattered beam, that is with g coinciding 
with ~, an arbitrary sequence, V ( 1 ) . . .  V(n) ,  can be paired 
with its inversion in the origin (Fig. 1), the Z function at 
corresponding points will be equal and therefore the wave 
function will be centrosymmetric in reciprocal space. 

Since the wave function is centrosymmetric, absorption 
described by a phenomenological potential can be included 
without destroying the inversion symmetry in the intensity 
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Fig. 1. Scattering diagrams for projections of non-centrosymmetric space 
groups with symmetry p31m and p3ml. Scattering diagram A is paired 
with diagram A' generated by inversion in the origin followed by 
reflexion in a mirror plane. 
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(a) 

(b) 
Fig. 2. Convergent-beam electron diffraction patterns of Li2ZnTi308 of space group no. 212, /'4332, illustrating the point that for a given 

structure two different projections can define the symmetry elements of the space group by means of loci of fundamentally different character. 
(a) Projection along [111]. Friedel's law breaks down for the first-order reflexions but holds along the loci, labelled l--l, which are at right 
angles to the planes of reflexion, labelled m--re. The symmetry of the projection is therefore p3ml. (b) Projection along [001] which is 
centrosymmelric. There is no breakdown of Friedei's law, but the loci of zeros associated with glide lines establishes the symmetry of this 
projection as p4gm (Gjonnes & Moodie, 1965). 
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of the forward-scattered beam, that is, of the zero-order 
convergent-beam disc. 

In certain non-centrosymmetric space groups, there exist 
projections that are centrosymmetric and for these Friedel's law 
will hold. There is, however, another class in which specific 
reflexions remain real under n-beam dynamical scattering 
conditions. Projections of non-centrosymmetric space groups 
having point-group symmetry p31m or p3ml are now shown 
to be of this type. The possibility of the existence of loci in 
two dimensions along which Friedel's law holds then arises 
since the Z function for the reflexions g and ~ will be equal at 
corresponding points of the convergent-beam discs. For point- 
group symmetry p31m or p3ml (Fig. 1), a typical scattering 
diagram A is paired with the diagram A' generated by inversion 
in the origin followed by reflexion in a mirror plane of the 
space group. 

The sum of the contributions is then real since (i) segments of 
type a and a' are real; (ii) segments of type b and b' are complex 
conjugates because of the action of the mirror planes; and (iii) 
segments of type c and c' are complex conjugates because of 
the action of the trigonal axis or the mirror. The particular 
case of the diagrams associated with systematic interactions is 
covered by (i). These cover all possible relationships amongst 
the diagrams. 

The wave amplitudes for reflexions g and ~ are therefore 
equal along the six loci that are normals to the mirror 
lines. These connect the origin to the first-order reflexions in 
projections with symmetry p31m and connect the origin to the 
second ring of reflexions in projections with symmetry p3ml 
(see Fig. 1). Friedel's law holds along these loci even with the 
inclusion of phenomenological absorption. Since the loci are 
determined by the Z function, they should be detectable in the 
sense of having a finite width. For very thin crystals, when the 
phase-grating approximation is valid, Friedel's law will hold 
over the entire disc and the breakdown that derives entirely 
from thickness effects will in general be rather small. For the 
set of reflexions in the case just considered, the antisymmetric 
parts of (1) vanish and (la) and (lb) reduce to 

sg = s~ = Coos + ics~n. 

3. Upper-layer-line contribution and 
convergent-beam electron diffraction 

In order to obtain the result in its most general form, that is, in 
order to include upper-layer-line interactions, the diagrams of 
Fig. 1 must be drawn in three dimensions. When this is done, it 
can be seen that an additional symmetry element is required for 
cancellation of the imaginary parts of the structure amplitudes 
in every pair of lines in the scattering diagram. This additional 
element is, in fact, a mirror plane normal to the projection and 
containing the mirror line of the projection. 

4. Experimental 

Loci have already been observed for the [001] projection of 
silica (Moodie & Fehlmann, 1993), which has space group no. 
152 (P3121) and projection symmetry p31m. 

In Fig. 2 are shown the convergent-beam electron diffraction 
patterns for the [001] and [111] projections of Li2ZnTi308 of 
space group no. 212 (P4332) (Joubert, Berthet & Bertaut, 1970). 
The [001] projection of this space group has symmetry p4gm 
and the CBED pattern exhibits the general reflexion condition 

that h00 reflexions are forbidden for h not equal to 4n. Friedel's 
law is seen to hold for all reflexions in this centrosymmetric 
projection. For the [111] projection of symmetry p3ml, there 
are loci along which Friedel's law holds, namely lines from 
the origin through the 121 and 272 reflexions. However, the 
first-order reflexions show a strong breakdown of Friedel's 
law. The departure of this structure from the centrosymmetric 
space group of spinel, no. 227, Fd3m, essentially arises from 
ordering of octahedrally coordinated 12 Ti and 4 Li atoms 
in Wyckoff positions 12(d) and 4(b) of space group P4332 
The 110 and 110 reflexions that arise as a consequence of the 
cation ordering are antiphase. 

SiO2 and Li2ZnTi308 exemplify the two major structural 
subdivisions for non-centrosymmetric structures (Moodie, 
1965). The non-centrosymmetric character depends on the 
positions in the former and on weights in the latter. 

APPENDIX 

15 non-centrosymmetric space groups have special projections 
with symmetry p3 lm: these include the [001] projections of the 
trigonal space groups 150 (P321), 152 (P3121), 154 (P3221), 
157 (P31m), 159 (P31c), 160 (R3m), and 161 (R3c) and of the 
hexagonal space groups 189 (P62m) and 190 (P6c). For these, 
the (001) lattice directions are mirror lines of the projections. 
For three of these space groups only, nos. 157, 160 and 189, 
these mirror lines are in fact mirror planes normal to the 
projections. The other special projections with symmetry p31m 
are the [111] projections of cubic space groups 215 (P3,3m), 216 
(FT~3m), 217 (l~,3m), 218 (P43n), 219 (FJ,3c) and 220 (143d). 
For three of these space groups, nos. 215, 216 and 217, the 
mirror lines are in fact mirror planes normal to the projections. 

16 non-centrosymmetric space groups have special projec- 
tions with symmetry p3ml: these include the [001] projections 
of trigonal space groups 149 (P312), 151 (P3112), 153 (P3212), 
155 (R32), 156 (P3ml) and 158 (P3cl), and hexagonal space 
groups 187 (P6m2) and 188 (P6c2), which all have mirror lines 
normal to the (100) equivalent lattice directions. In just two 
of these cases is the mirror line a mirror plane normal to the 
projection, namely space groups 156 and 187. The other special 
projections with symmetry p3ml are the [111] projections of 
cubic space groups 207 (P432), 208 (P4232), 209 (F432), 210 
(F4132), 211 (1432), 212 (P4332), 213 (P4132) and 214 (14132). 
None of these cubic space groups have mirror planes normal 
to their [111] projections. 
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